期刊文章
[1] Mengyun Xu, Jie Fang, Prateek Bansal, Eui-Jin Kim, Tony Z.Qiu “Physics informed deep generative model for vehicle trajectory reconstruction at arterial intersections in connected vehicle environment.” Transportation research, Part C. Emerging technologies, DOI:10.1016/j.trc.2024.104985. (SCI Q1)
[2] Jie Fang, SiBin Cai, Ya You, Mengyun Xu*, Prateek Bansal, Eui-Jin Kim. “Coordinated Multi-agent Reinforcement Learning Method for Integrating Transit Signal Priority and Speed Guidance Control”, IEEE Transactions on Intelligent Transportation Systems, 2025. (SCI Q1)
[3] Mengyun Xu, Tony Z.Qiu, Jie Fang, Hangyu He, Hongting Chen. “Signal-control refined dynamic traffic graph model for movement-based arterial network traffic volume prediction.” Expert Systems with Applications 228 (2023): 120393. (SCI Q1)
[4] Mengyun Xu, Jie Fang and Yinfang Tong. “An Intelligent Adaptive Spatiotemporal Graph Approach for GPS-Data-Based Travel-Time Estimation.” IEEE Intelligent Transportation Systems Magazine 14 (2022): 222-237. (SCI Q1)
[5] Mengyun Xu, Zhichao Wu, Sibin Cai, et al. “Heterogeneous-Scale Multi-Graph Convolutional Network Based on Kernel Density Estimation for Traffic Prediction”. IET Intelligent Transport Systems, 2025, 19(1).DOI:10.1049/itr2.70042. (SCI Q2)
[6] Mengyun Xu, Ya You, Huahua Wu, et al., “Conditional Urban Traffic Status Prediction Model With Hybrid Graph Recurrent Network”. Proc. IMechE, Part D: Journal of Automobile Engineering, 2025.(SCI Q3)
[7] Mengyun Xu, Kehua Guo, Jie Fang,et al. “Utilizing Artificial Neural Network in GPS-equipped Probe Vehicles Data Based Travel time Estimation”. IEEE Access, 2019, PP(99):1-1.DOI:10.1109/ACCESS.2019.2926851. (SCI Q2)
[8] Qiu, Tony Z., Mengyun Xu* and Jie Fang. “Internet of Vehicles Data-Oriented Arterial Travel Time Estimation Framework With Dynamic Multigraph Model.” IEEE Intelligent Transportation Systems Magazine 15 (2023): 101-116. (SCI Q1)
[9] Jie Fang, Xiongwei Wu, Mengyun Xu*, Chunping Li, Xuesong Wu, and Li Li. "A Macroscopic Fundamental Function Aided Neural Networks For Traffic Flows Prediction From Mobile Signaling Data." IEEE Internet of Things Journal, 2024. (SCI Q1)
[10] Sibin Cai, Jie Fang, Mengyun Xu*. “FairSignal: A Multiagent Reinforcement Learning Approach Considering Fairness for Multi-Intersection Traffic Signal Control[J]. IEEE Internet of Things Journal”, 2025, 12(13):23835-23851.DOI:10.1109/JIOT.2025.3555822. (SCI Q1)
[11] Jie Fang, Hangyu He, Mengyun Xu*, and Hongting Chen. "MDTGAN: Multi domain generative adversarial transfer learning network for traffic data imputation." Expert Systems with Applications 255 (2024): 124478. (SCI Q1)
[12] Sibin Cai, Jie Fang, Mengyun Xu*. “XLight: An interpretable multi-agent reinforcement learning approach for traffic signal control”. Expert Systems With Applications, 2025, 273.DOI:10.1016/j.eswa.2025.126938. (SCI Q1)
[13] Jie Fang, Ya You, Mengyun Xu*, Juanmeizi Wang, Sibin Cai. “Multi-Objective Traffic Signal Control Using Network-Wide Agent Coordinated Reinforcement Learning.” Expert Systems with Applications 229 (2023): 120535. (SCI Q1)
[14] Jie Fang, Xiongwei Wu, Dianchao Lin, Mengyun Xu*, Huahua Wu, Xuesong Wu and Ting Bi. “A Map-Matching Algorithm With Extraction of Multi-Group Information for Low-Frequency Data”. IEEE Intelligent Transportation Systems Magazine, 2023, 15(2):238-250.DOI:10.1109/MITS.2022.3207831. (SCI Q1)
[15] Jie Fang, Zhichao Wu, Mengyun Xu*, and Hongting Chen. "Multistep traffic speed prediction from multiple time-scale spatiotemporal features using graph attention network." Applied Intelligence (2024): 1-14. (SCI Q2)
[16] Jie Fang, Hangyu He, Mengyun Xu*, and Xiongwei Wu. "Heterogeneous Multi-Modal Graph Network for Arterial Travel Time Prediction." Applied Intelligence (2024). (SCI Q2)
[17] Jie Fang, Mingwen Lu, Lina Fu, Juanmeizi Wang, and Mengyun Xu*. "Freeway optimal control based on emission oriented microscopic graph convolutional neural network." Applied Intelligence (2025). (SCI Q2)
[18] Jie Fang, Chen Wentian, Mengyun Xu*, Liu Yuxuan. “Trajectory-Based Spatiotemporal Multi-Task Multi-Graph Network for Traffic State Prediction”[J]. Transportation Research Record: Journal of the Transportation Research Board.(2023) (SCI Q3)
[19] Xuesong Wu, Mengyun Xu, Jie Fang and Xiongwei Wu. “A Multi-Attention Tensor Completion Network for Spatiotemporal Traffic Data Imputation.” IEEE Internet of Things Journal 9 (2022): 20203-20213. (SCI Q1)
[20] Zhijia Liu, Jie Fang, Yingfang Tong, and Mengyun Xu. "Deep learning enabled vehicle trajectory map‐matching method with advanced spatial–temporal analysis." IET Intelligent Transport Systems 14.14 (2020): 2052-2063. (SCI Q2)
[21] Tao Chen, Jie Fang, Mengyun Xu, et al. “Prediction of Public Bus Passenger Flow Using Spatial–Temporal Hybrid Model of Deep Learning.” Journal of Transportation Engineering, Part A: Systems. (2022) 148. 10.1061/JTEPBS.0000653. (SCI Q3)
会议文章
[1] Deep-learning based Vehicle Trajectory Reconstruction for Arterial intersection Under Connected Vehicle Environment. The 103st Annual Meeting of Transportation Research Board (TRB), Washington D.C., USA. January, 2024. (第一作者)
[2] Travel Time Prediction Method with Multi-Graph Traffic Network Model. 29th ITS World Congress(ITSWC), Suzhou, China, 2023. (第一作者)
[3] Probe Vehicles Data Based Traffic Speed Estimation for Urban Road Network. Proceedings of the 20th COTA International Conference of Transportation Professionals, CICTP2020, Xian, China, 2020. (第一作者)
专利成果
[1] 许梦云,张祎,施丘岭,邱志军.一种基于浮动车数据的路段旅行时间预测方法及装置(CN113052206B).2021-03-04
[2] 许梦云,方捷,何杭宇.一种路段旅行时间预测方法及系统(CN117218831A).2023-12-12
[3] 张祎,许梦云,施丘岭,邱志军.一种公交优先的交叉口信号控制方法及装置(CN113032964A).2021-02-26