黄明

职称:教授

通讯地址:福州地区大学城学园路2号福州大学土木工程学院

邮政编码:350108

Email:huangming05@fzu.edu.cn

个人简介

黄 明(1983-),教授,博士生导师,国家级青年人才,福建省“雏鹰计划”青年拔尖人才,福建省杰青、福建省青年科技奖获得者。现为福州大学土木工程学院副院长、福州大学岩土工程研究所所长,福州大学海峡通道工程研究中心主任,中国岩石力学与工程学会青年委员会委员。主要从事生物岩土加固技术、盾构法隧道及岩土地下工程等方面的教学与科研工作,主持国家自然科学基金项目4项,省部级课题6项,发表科技论文80余篇,其中SCI/EI收录50余篇,授权国家专利20余项,获省部级科技进步奖5项。重点开展的研究方向:1)微生物岩土工程的理论基础与技术开发;2)盾构渣土改良及渣土再利用技术研究;3)城市地铁盾构/TBM隧道掘进稳定性计算与安全控制;4)复杂环境下隧道动态施工力学效应分析与灾害防治。

学习经历

2016.3-2017.3 澳大利亚阿德莱德大学 土木与采矿工程学院 访问学者;

2007.9-2010.6 重庆大学 土木工程专业 博士;

2005.9-2007.6 重庆大学 土木工程专业 硕士;

2001.9-2005.7 华东交通大学 土木工程专业 本科学士;

工作经历

2018.7-至 今 福州大学 土木工程学院 教授、博导;

2013.7-2018.6 福州大学 土木工程学院 副教授、博导;

2010.7-2013.6 福州大学 土木工程学院 讲师;

科研获奖

[1] 2020年度福建省科技进步一等奖:富水复合地层盾构法隧道施工及其装备优化关键技术与应用;

[2] 2021年度中国公路学会科技进步一等奖:覆盖型岩溶区公路塌陷防治关键技术;

[3] 2019年度福建省科技进步二等奖:复杂地层条件下地铁车站建造及站-桥同位合建关键技术;

[4] 2013年度重庆市科技进步奖二等奖:深部岩溶隧道溃水灾变机理及工程处治技术;

[5] 2018年度福建省科技进步奖三等奖:公路隧道软岩大变形灾害致灾机理及处治技术;

主持课题

纵向课题:

[1] 国家自然科学基金面上项目:酶诱导矿化胶结回填体导热性能提升机制及服役过程演化特征(NO. 52378392),2023-2026年,主持;

[2] 国家自然科学基金面上项目:红层软岩填筑体微生物矿化增强机制及其承载性能研究(NO.41972276),2020-2023年,主持;

[3] 国家自然科学基金面上项目:岩溶区超大直径变截面桩的破坏模式与荷载传递机制(NO. 41672290),2017-2020年,主持;

[4] 国家自然科学基金青年科学基金项目:水分-应力耦合作用下软岩的流变机理及其扰动状态理论模型(NO. 41202195),2013-2015年,主持;

[5] 福建省“雏鹰计划”青年拔尖人才项目(资助200万元),2021-2025,主持

[6] 福建省杰出青年科学基金项目:南方湿热区红层填筑体的产脲酶菌加固效应与作用机制研究(NO.2020J01310246),2020-2023年,主持;

[7] 国家自然科学基金面上项目:预应力RPC-RC柔性节段桩基础整体无缝桥的受荷性状和设计计算方法研究,2018-2021年,参与(排名第三);

[8] 福建省高校杰青培育计划:利用生物矿化反应加固页岩残积土的作用机制与方法优化,2017-2019年,主持;

[9] 福建省自然科学基金面上项目:嵌岩桩-串珠状溶洞的耦合扰动响应及体系渐进失稳演化机制,2016-2018年,主持;

[10] 福建省自然科学基金青年项目:高速运移列车荷载下路堤湿化软岩填料的动蠕变特性研究,2012-2014年,主持;

[11] 教育部博士点基金新教师类项目:基于扰动状态概念的软岩水分-应力耦合流变机理研究,2012-2015年,主持;

横向课题:

[1] 生物酶矿化与生物凝胶法联合防渗加固关键技术(2024-2026), 主持

[2] 复杂周边环境下滨海富水砂层地铁车站基坑施工稳定控制关键技术(2023-2025), 主持;

[3] 海域吹填砂地层盾构掘进力学效应与施工稳定性控制关键技术(2020-2023), 主持;

[4] 运营地铁隧道上部既有地下空间改造施工控制关键技术(2022-2025), 主持;

[5] 基坑绿色无支撑倾斜种组合支护体系研究及应用研究(2022-2024),主持;

[6] 大断面类矩形盾构下穿站场安全控制关键技术研究(2021-2023), 主持;

[7] 复杂岩溶地区桥梁桩基设计与施工关键技术研究(2021-2022),主持;

[8] 滨海深厚软土层地下综合管廊地基换填砂EICP加固新技术(2020-2021), 主持;

[9] 滨海花岗岩风化层盾构施工适应性及智能选型与综合处置技术(2018-2020), 主持;

[10] 腐蚀性膨胀软岩隧道病害诱发机制及关键处置技术研究(2018-2020), 主持;

[11] 滨海土岩复合地层中地铁T型换乘站基坑降水开挖施工力学效应与灾害防治技术(2013-2015), 主持;

[12] 串珠状溶洞地层中高速铁路大直径桥桩基础的承载机理与抗震性能研究(2014-2016), 主持;

[13] 复杂地质条件下大断面隧道下穿大体量地表储水体的动态施工技术研究(2014-2015), 主持;

[14] 石林隧道仰拱底鼓机理分析及处治技术研究(2012-2013), 主持。

主要科研论文(近五年发表代表性论文,*为通讯作者)

()、微生物岩土工程方向:

[1] M. Huang*, Q. W. Jiang, K. Xu, C. S. Xu. (2024). Feasibility analysis of EICP technique for reinforcing backfill layer behind TBM tunnel linings based on model tests, Tunnelling and Underground Space Technology. (Revised)

[2] K. Xu, M. Huang*, M. J. Cui, G. X. Jin, S. Li. (2024). Micromechanical properties and bonding fracture of EICP-reinforced sand analyzed using microindentation test, Acta Geotechnica. (Revised)

[3] M. Huang*, K. Xu, Z. J. Liu, C. S. Xu, M. J. Cui. (2024). “Effect of drying-wetting cycles on pore characteristics and mechanical properties of enzyme-induced carbonate precipitation-reinforced sea sand”, Journal of Rock Mechanics and Geotechnical Engineering, 16(1): 291-302.

[4] K. Xu, M. Huang*, M. J. Cui, S. Li. (2024). “Effect of crystal morphology on cementation ability and micromechanical properties of calcium carbonate precipitation induced using crude soybean enzyme”, Journal of Rock Mechanics and Geotechnical Engineering. (In press)

[5] S. Li, M. Huang*, M. J. Cui, K. Xu. (2023). “Thermal conductivity enhancement of backfill material and soil using enzyme-induced carbonate precipitation (EICP)”, Acta Geotechnica, 18(11): 6143-6158.

[6] K. Xu, M. Huang*, M. J. Cui, S. Li. (2023). “Retarding effect of cementation solution concentration on cementation ability of calcium carbonate crystal induced using crude soybean enzyme”, Acta Geotechnica, 18(22): 6235-6251.

[7] K. Xu, M. Huang*, C. S. Xu, J. J. Zhen, G. X. Jin, H. Gong. (2023). “Assessment of the bio-cementation effect on shale soil using ultrasound measurement”, Soils and Foundations, 63(1): 101249.

[8] S. Li, M. Huang*, M. J. Cui, P. Lin, L. D. Xu, K. Xu. (2023). “Stabilization of cement-soil utilizing microbially induced carbonate precipitation”, Geomechanics and Engineering, 35(1): 95-108.

[9] K. Xu, M. Huang*, J. X. Zhan, M. J. Cui, C. S. Xu. (2023). “Bio-cementation of tailings sand using ultraviolet induced urease-producing bacteria and its biomineralization mechanism”, Environmental Geotechnics, (Online).

[10] K. Xu, M. Huang*, Z. J. Liu, M. J. Cui, S. Li. (2023). “Mechanical properties and disintegration behavior of EICP-reinforced sea sand subjected to drying-wetting cycles”, Biogeotechnics, 1(2): 10019.

[11] S. Li, M. Huang*, M. J. Cui, K. Xu, G. X. Jin. (2023). “Thermal and mechanical properties of bio-cemented quartz sand mixed with steel slag”, Biogeotechnics, 1(3): 100036.

[12] K. Xu, M. Huang*, J. J. Zhen, C. S. Xu, M. J. Cui. (2022). “Field implementation of enzyme-induced carbonate precipitation technology for reinforcing a bedding layer beneath an underground cable duct”, Journal of Rock Mechanics and Geotechnical Engineering, 15(4): 1011-1022.

[13] M. Huang*, K. Xu, C. S. Xu, G. X. Jin, S. Guo. (2021). “Micromechanical properties of biocemented shale soils analyzed using nanoindentation test”, ASCE, Journal of Geotechnical and Geoenvironmental Engineering, 147(12): 04021157.

[14] G. X. Jin, K. Xu, C. S. Xu, M. Huang*, R. G. A. Qasem, S. Guo, S.Y. Liu. (2021). “Cementation of shale soils by micp technology and its damage characteristics due to freeze-thaw weathering processes”, Journal of Cold Regions Engineering, 34(4): 04020023.

[15] K. Xu, Y. X. Peng, M. Huang*, Z. J. Liu, J. J. Zhen. (2021). “Biocementation effect of high-efficiency urease-producing bacteria mutagenized from indigenous bacteria”, IOP Conference Series: Earth and Environmental Science (ARMS 11), 2021, 861.

[16] 姜启武, 黄明*, 崔明娟, . 酶诱导碳酸钙沉淀技术加固TBM壁后吹填豆砾石最优配比试验及机制研究. 岩土力学, 2024, 45(07): 2037-2049.

[17] 李爽, 黄明*, 崔明娟, . 纳米四氧化三铁对微生物诱导碳酸钙沉淀的作用效果与机理研究. 材料导报, 2024. (网络首发)

[18] 姜启武, 黄明*, 崔明娟, . Ca2+浓度对EICP固化钙质砂效果影响的试验研究[J]. 工程地质学报, 2024. (网络首发)

[19] 姜启武, 黄明*, 许凯, . MICP 固化钙质砂的统计损伤本构模型[J]. 工程地质学报, 2023. (网络首发)

[20] 刘子健, 黄明*, 崔明娟, . 基于纳米压痕技术的页岩土MICP结石体微观力学特性研究. 防灾减灾工程学报, 2022, 42(05): 1036-1045.

[21] 张瑾璇, 黄明*, 刘子健. 南方湿热区新型产脲酶菌加固土体的效果研究[J].工程地质学报, 2021, 31(01): 113-123.

[22] 黄明*, 张瑾璇, 刘子健, 许凯. 南方湿热区产脲酶菌固化海砂的碳酸钙结晶效果研究. 高校地质学报. 2021, 27(06): 716-722.

[23] 许凯, 靳贵晓, 刘子健, 黄明*, 龚豪. 软岩填筑体多层多孔微生物灌浆室内模型试验研究.工程地质学报. 2020, 28(04): 697-706.

[24] 靳贵晓, 张瑾璇, 许凯, 黄明*, 邱继业. 颗粒级配对残积土MICP灌浆效果的影响评价. 地下空间与工程学报. 2020, 16(01): 295-302.

[25] 靳贵晓, 张瑾璇, 许凯, 黄明*, 龚豪. 页岩填料MICP-格栅灌浆胶结体超声波速分布特征. 地下空间与工程学报. 2019, 15(05): 1353-1361.

[26] 黄明*, 张瑾璇, 靳贵晓, . 残积土MICP灌浆结石体冻融损伤的核磁共振特性试验研究[J]. 岩石力学与工程学报, 2018, 37(12): 210-219.

()、盾构与隧道方向:

[1] M. Huang*, S. Jiang, Y. C. Zhang, Y. J. Jiang, X. D., Zhang, C. S. Xu. (2024). A new stability analysis model for wet-dry sensitive rocks surrounding underground excavations based on disturbed state concept theory, International Journal of Rock Mechanics and Mining Sciences, 174: 105653.

[2] M. Huang*, Y. Lu, J. J. Zhen, X. B. Lan, C. S. Xu, W. L. Yu. (2023). “Analysis of face stability at the launch stage of shield or TBM tunnelling using a concrete box in complex urban environments”, Tunnelling and Underground Space Technology, 135: 105067.

[3] Y. Lu, M. Huang*, F. W. Lai, C. S. Xu, L. Q. Peng, (2024). Quantitative interrelations of conditioning and recycling indices of high-saturation clay soils for EPB shield tunnelling, Tunnelling and Underground Space Technology, 154: 106083.

[4] Y. Lu, M. Huang*, C. Z., Zhang, B. N. Wang, L. Q. Peng, W. Wei, (2024). Optimization of defoaming-flocculation-dewatering indices of earth pressure balance (EPB) shield muck using response surface methodology and desirability approach, Journal of Rock Mechanics and Geotechnical Engineering. (In press)

[5] W. F. Qian, M. Huang*, B. N. Wang, C. S. Xu, Y. F. Hu. (2024). “Experimental study of face passive failure features of a shallow shield tunnel in coastal backfill sand”, Frontiers of Structural and Civil Engineering, 18(2): 252-271.

[6] Y. Lu, M. Huang*, Q. Zhou, B.N. Wang, W. Wei, J. Chen, (2024). On recycling earth pressure balance shield muck with residual foaming agent: defoaming and antifoaming investigations. Environmental Science and Pollution Research, 31(5), 8046-8060.

[7] Y. Lu, M. Huang*, P. W. Huang, C. S. Xu, Y. Wang, Y. F. Hu. (2024). “Soil conditioning for EPB shield tunnelling in coastal silty clay strata: laboratory research and field application”, ASCE, International Journal of Geomechanics, 24(2): 04023289.

[8] Y. Lu, M. Huang*, Q. W. Jiang, Z. J. Chen, C. S. Xu, Y. Wang. (2023). “Excavation-induced groundwater evolution of non-circular tunnels in mountainous region: analytical and numerical investigation”, ASCE, International Journal of Geomechanics, 2023, 23(12): 1.1-1.12.

[9] Y. Lu, M. Huang*, Z. J. Chen, Z. S. Zeng, Y. C. Liu, G. Z. Du. (2023). “Drainage design combining drain holes and pinholes for tunnel boring machine segments subject to high water pressure”, Frontiers of Structural and Civil Engineering, 17(11), 1723-1738.

[10] S. Jiang, M. Huang*, B. N. Wang, K. S. Zhang, Y. Li, Z. G. Liu. (2023). “Numerical study on the effects of wetting-drying cycles on the failure modes of tunnels excavated in gypsiferous strata based on discrete element method”. Bulletin of Engineering Geology and the Environment, 82(9): 368.

[11] S. Jiang, M. Huang*, Y. J. Jiang, C. S. Xu, B. L. Li. (2021). NMR-based Investigation on the wetdry deterioration characteristics of gypsiferous rocks surrounding underground excavations, Rock Mechanics and Rock Engineering. 55(4): 2323-2339.

[12] W. F. Qian, M. Huang*, C. M. Sun, B. Huang, H. Liu, G.F., Wang. (2021). Adaptability of earth pressure balance shield tunneling in coastal complex formations: a new evaluation method, Geomechanics and Engineering, 27(4): 375-390.

[13] S. Jiang, M. Huang*, X. Z. Wu, Z. F. Chen, K.S. Zhang. (2021). Deterioration behavior of gypsum breccia in surrounding rock under the combined action of cyclic wetting-drying and flow rates, Bulletin of Engineering Geology and the Environment, 80(6): 4985-5001.

[14] M. Huang*, J. W. Zhan, C. S. Xu, S. Jiang. (2020). A new creep constitutive model for soft rocks and its application in prediction of time-dependent deformation disaster in tunnels, ASCE, International Journal of Geomechanics, 20(7): 04020096.

[15] M. Huang*, J. W. Zhan. (2019). Face stability assessment for underwater tunneling across a fault zone, ASCE, Journal of Performance of Constructed Facilities, 33(3): 04019034.

[16] W. F. Qian , Y. Lu, M. Huang*, J.W. Zhan. (2021). Study on the evaluation of adaptability of shield machine type selection in coastal complex stratum. IOP Conference Series: Earth and Environmental Science (ARMS 11), 2021, 861.

[17] S. Jiang, Y. X. Peng, Y. Lu, M. Huang*. (2021). NMR-based investigation on deterioration characterization of gypsum breccia in surrounding rock undergoing flow-by wetting-drying cycles, IOP Conference Series: Earth and Environmental Science (ARMS 11), 2021, 861.

[18] Y. Lu, M. Huang*, J. Shiau, F. W. Lai, J.J. Xu. (2024). Vacuum dewatering behavior of foam-conditioned clay soil and its potential for assessing foam-conditioned optimization in EPB shield tunnelling, Journal of Rock Mechanics and Geotechnical Engineering. (Under review)

[19] J. J. Zhen, M. Huang*, S. Li, K. Xua, Q. H. Zhao. (2024). Long-term forecasting of shield tunnel position and attitude deviation using the DCNN-Informer method, Engineering Science and Technology-An International Journal. (Under review)

[20] S. Jiang, M. Huang*, G. Wang, C. S. Xu, J. Xiong. (2024). Mechanical properties and disturbed state concept-based theoretical model of gypsum rocks with coupled influences of wet-dry cycles and flow rates, Journal of Central South University. (Under review)

[21] J. J. Zhen, F. W. Lai, J. Shiau, M. Huang*, L. Yao, J. H. Lin. (2024). An unsupervised incremental learning model to predict geological conditions for EPB shield tunnelling, Journal of Rock Mechanics and Geotechnical Engineering. (Revised)

[22] J. J. Zhen, F. W. Lai, J. Shiau, M. Huang*, et al. (2024). An explainable deep learning approach to enhance the shield tunnel deviation prediction, Tunnelling and Underground Space Technology. (Under review)

[23] J. J. Zhen, F. W. Lai, J. Shiau, M. Huang*, L. Yao, M.F. Huang. (2024). Long sequence time-series forecasting for shield position deviation: a novel deep transfer learning framework, Automation in Construction. (Under review)

[24] 钱伟丰, 黄明*, 曾子坚, . 双向起伏地表浅埋盾构隧道开挖面三维被动失稳极限支护压力上限解. 应用基础与工程科学学报, 2023. (录用待刊)

[25] 姜启武, 黄明*, 陈志杰, . 深埋隧道掌子面前方地层三维渗流场解析及涌水量预测分析. 工程地质学报, 2024. (网络首发)

[26] 真嘉捷, 赖丰文, 黄明*, . 基于Light GBM-Informer的盾构隧道管片上浮长时间序列预测模型,岩土力学,2024. (录用待刊)

()、其他方向:

[1] M. Huang*, S. Jiang, C. S. Xu, D. X. Xu. (2020). “A new theoretical settlement model for large step-tapered hollow piles based on disturbed state concept theory”, Computers and Geotechnics, 124: 103626.

[2] Y. C. Zhang, M. Huang*, Y.J. Jiang, Z. Wang. (2023). Mechanics, damage and energy degradation of rock-concrete interfaces exposed to high temperature during cyclic shear. Construction and Building Materials, 405: 133229.

[3] S. Jiang, M. Huang*, A. Deng, D. X. Xu. (2021). “Theoretical solution for long-term settlement of a large step-tapered hollow pile in karst topography”, ASCE, International Journal of Geomechanics, 21(8): 04021148.

[4] S. Jiang, M. Huang*, T. Fang, W. Chen, and X. Shangguan. (2020). “A new large step-tapered hollow pile and its bearing capacity”, Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 173(3): 191-206.

[5] S. Jiang, M. Huang*, A. Deng, D. X. Xu, T. Fang. (2023). “A time-dependent load-transfer model for large step-tapered hollow piles based on the disturbed state concept”, Soil Mechanics and Foundation Engineering, 60: 141-148.

[6] T. Fang, M. Huang*, K. Tang. (2020). "Cross-section piles in transparent soil under different dimensional conditions subjected to vertical load: an experimental study." Arabian Journal of Geosciences 13:1133.

[7] T. Fang, M. Huang*. (2019). “Deformation and load-bearing characteristics of step-tapered piles in clay under lateral load”. ASCE, International Journal of Geomechanics, 19(6): 04019-04053.

[8] M. Huang*, X. R. Liu, N. Y. Zhang, et al. (2017). “Calculation of foundation pit deformation caused by deep excavation considering influence of loading and unloading”, Journal of Central South University, 24(9): 2164-2171.

[9] 黄明*,付俊杰,陈福全,江松,张光武. 桩端岩溶顶板地震动力特性的振动台试验研究[J]. 哈尔滨工业大学学报, 2019, 51(02): 126-135.

[10] 黄明*, 江松, . 超大直径变截面空心桩的荷载传递特征与理论模型[J]. 岩石力学与工程学报, 2018, 37(10): 2370-2383.

[11] 黄明*, 付俊杰, 陈福全. 桩端岩溶顶板的破坏特征试验与理论计算模型研究[J]. 工程力学, 2018, 35(10): 175-185.

[12] 黄明*, 江松, . 基于分离相似概念的地铁异形基坑三维开挖模型试验[J]. 工程地质学报, 2018, 26(2): 0384-0391.

专著与教材

[1]  岩溶区超大直径变截面空心桩承载机理与计算方法, 人民交通出版社, 2021 (第一)

[2]  复杂岩溶区桩基地震响应及稳定性研究, 人民交通出版社, 2021(第一)

[3]  特殊地段盾构法隧道施工技术, 人民交通出版社, 2022(第二)

[4]  阶梯型变截面桩优化设计方法及应用, 中国建筑工业出版社, 2020(第三)

[5]  地下结构设计, 重庆大学出版社, 2013(副主编)