(一)、微生物岩土工程方向:
[1] M. Huang*, Q. W. Jiang, K. Xu, C. S. Xu. (2024). “Feasibility analysis of EICP technique for reinforcing backfill layer behind TBM tunnel linings based on model tests”, Tunnelling and Underground Space Technology. (Revised)
[2] K. Xu, M. Huang*, M. J. Cui, G. X. Jin, S. Li. (2024). “Micromechanical properties and bonding fracture of EICP-reinforced sand analyzed using microindentation test”, Acta Geotechnica. (Revised)
[3] M. Huang*, K. Xu, Z. J. Liu, C. S. Xu, M. J. Cui. (2024). “Effect of drying-wetting cycles on pore characteristics and mechanical properties of enzyme-induced carbonate precipitation-reinforced sea sand”, Journal of Rock Mechanics and Geotechnical Engineering, 16(1): 291-302.
[4] K. Xu, M. Huang*, M. J. Cui, S. Li. (2024). “Effect of crystal morphology on cementation ability and micromechanical properties of calcium carbonate precipitation induced using crude soybean enzyme”, Journal of Rock Mechanics and Geotechnical Engineering. (In press)
[5] S. Li, M. Huang*, M. J. Cui, K. Xu. (2023). “Thermal conductivity enhancement of backfill material and soil using enzyme-induced carbonate precipitation (EICP)”, Acta Geotechnica, 18(11): 6143-6158.
[6] K. Xu, M. Huang*, M. J. Cui, S. Li. (2023). “Retarding effect of cementation solution concentration on cementation ability of calcium carbonate crystal induced using crude soybean enzyme”, Acta Geotechnica, 18(22): 6235-6251.
[7] K. Xu, M. Huang*, C. S. Xu, J. J. Zhen, G. X. Jin, H. Gong. (2023). “Assessment of the bio-cementation effect on shale soil using ultrasound measurement”, Soils and Foundations, 63(1): 101249.
[8] S. Li, M. Huang*, M. J. Cui, P. Lin, L. D. Xu, K. Xu. (2023). “Stabilization of cement-soil utilizing microbially induced carbonate precipitation”, Geomechanics and Engineering, 35(1): 95-108.
[9] K. Xu, M. Huang*, J. X. Zhan, M. J. Cui, C. S. Xu. (2023). “Bio-cementation of tailings sand using ultraviolet induced urease-producing bacteria and its biomineralization mechanism”, Environmental Geotechnics, (Online).
[10] K. Xu, M. Huang*, Z. J. Liu, M. J. Cui, S. Li. (2023). “Mechanical properties and disintegration behavior of EICP-reinforced sea sand subjected to drying-wetting cycles”, Biogeotechnics, 1(2): 10019.
[11] S. Li, M. Huang*, M. J. Cui, K. Xu, G. X. Jin. (2023). “Thermal and mechanical properties of bio-cemented quartz sand mixed with steel slag”, Biogeotechnics, 1(3): 100036.
[12] K. Xu, M. Huang*, J. J. Zhen, C. S. Xu, M. J. Cui. (2022). “Field implementation of enzyme-induced carbonate precipitation technology for reinforcing a bedding layer beneath an underground cable duct”, Journal of Rock Mechanics and Geotechnical Engineering, 15(4): 1011-1022.
[13] M. Huang*, K. Xu, C. S. Xu, G. X. Jin, S. Guo. (2021). “Micromechanical properties of biocemented shale soils analyzed using nanoindentation test”, ASCE, Journal of Geotechnical and Geoenvironmental Engineering, 147(12): 04021157.
[14] G. X. Jin, K. Xu, C. S. Xu, M. Huang*, R. G. A. Qasem, S. Guo, S.Y. Liu. (2021). “Cementation of shale soils by micp technology and its damage characteristics due to freeze-thaw weathering processes”, Journal of Cold Regions Engineering, 34(4): 04020023.
[15] K. Xu, Y. X. Peng, M. Huang*, Z. J. Liu, J. J. Zhen. (2021). “Biocementation effect of high-efficiency urease-producing bacteria mutagenized from indigenous bacteria”, IOP Conference Series: Earth and Environmental Science (ARMS 11), 2021, 861.
[16] 姜启武, 黄明*, 崔明娟, 等. 酶诱导碳酸钙沉淀技术加固TBM壁后吹填豆砾石最优配比试验及机制研究. 岩土力学, 2024, 45(07): 2037-2049.
[17] 李爽, 黄明*, 崔明娟, 等. 纳米四氧化三铁对微生物诱导碳酸钙沉淀的作用效果与机理研究. 材料导报, 2024. (网络首发)
[18] 姜启武, 黄明*, 崔明娟, 等. Ca2+浓度对EICP固化钙质砂效果影响的试验研究[J]. 工程地质学报, 2024. (网络首发)
[19] 姜启武, 黄明*, 许凯, 等. MICP 固化钙质砂的统计损伤本构模型[J]. 工程地质学报, 2023. (网络首发)
[20] 刘子健, 黄明*, 崔明娟, 等. 基于纳米压痕技术的页岩土MICP结石体微观力学特性研究. 防灾减灾工程学报, 2022, 42(05): 1036-1045.
[21] 张瑾璇, 黄明*, 刘子健. 南方湿热区新型产脲酶菌加固土体的效果研究[J].工程地质学报, 2021, 31(01): 113-123.
[22] 黄明*, 张瑾璇, 刘子健, 许凯. 南方湿热区产脲酶菌固化海砂的碳酸钙结晶效果研究. 高校地质学报. 2021, 27(06): 716-722.
[23] 许凯, 靳贵晓, 刘子健, 黄明*, 龚豪. 软岩填筑体多层多孔微生物灌浆室内模型试验研究.工程地质学报. 2020, 28(04): 697-706.
[24] 靳贵晓, 张瑾璇, 许凯, 黄明*, 邱继业. 颗粒级配对残积土MICP灌浆效果的影响评价. 地下空间与工程学报. 2020, 16(01): 295-302.
[25] 靳贵晓, 张瑾璇, 许凯, 黄明*, 龚豪. 页岩填料MICP-格栅灌浆胶结体超声波速分布特征. 地下空间与工程学报. 2019, 15(05): 1353-1361.
[26] 黄明*, 张瑾璇, 靳贵晓, 等. 残积土MICP灌浆结石体冻融损伤的核磁共振特性试验研究[J]. 岩石力学与工程学报, 2018, 37(12): 210-219.
(二)、盾构与隧道方向:
[1] M. Huang*, S. Jiang, Y. C. Zhang, Y. J. Jiang, X. D., Zhang, C. S. Xu. (2024). “A new stability analysis model for wet-dry sensitive rocks surrounding underground excavations based on disturbed state concept theory”, International Journal of Rock Mechanics and Mining Sciences, 174: 105653.
[2] M. Huang*, Y. Lu, J. J. Zhen, X. B. Lan, C. S. Xu, W. L. Yu. (2023). “Analysis of face stability at the launch stage of shield or TBM tunnelling using a concrete box in complex urban environments”, Tunnelling and Underground Space Technology, 135: 105067.
[3] Y. Lu, M. Huang*, F. W. Lai, C. S. Xu, L. Q. Peng, (2024). “Quantitative interrelations of conditioning and recycling indices of high-saturation clay soils for EPB shield tunnelling”, Tunnelling and Underground Space Technology, 154: 106083.
[4] Y. Lu, M. Huang*, C. Z., Zhang, B. N. Wang, L. Q. Peng, W. Wei, (2024). “Optimization of defoaming-flocculation-dewatering indices of earth pressure balance (EPB) shield muck using response surface methodology and desirability approach”, Journal of Rock Mechanics and Geotechnical Engineering. (In press)
[5] W. F. Qian, M. Huang*, B. N. Wang, C. S. Xu, Y. F. Hu. (2024). “Experimental study of face passive failure features of a shallow shield tunnel in coastal backfill sand”, Frontiers of Structural and Civil Engineering, 18(2): 252-271.
[6] Y. Lu, M. Huang*, Q. Zhou, B.N. Wang, W. Wei, J. Chen, (2024). “On recycling earth pressure balance shield muck with residual foaming agent: defoaming and antifoaming investigations”. Environmental Science and Pollution Research, 31(5), 8046-8060.
[7] Y. Lu, M. Huang*, P. W. Huang, C. S. Xu, Y. Wang, Y. F. Hu. (2024). “Soil conditioning for EPB shield tunnelling in coastal silty clay strata: laboratory research and field application”, ASCE, International Journal of Geomechanics, 24(2): 04023289.
[8] Y. Lu, M. Huang*, Q. W. Jiang, Z. J. Chen, C. S. Xu, Y. Wang. (2023). “Excavation-induced groundwater evolution of non-circular tunnels in mountainous region: analytical and numerical investigation”, ASCE, International Journal of Geomechanics, 2023, 23(12): 1.1-1.12.
[9] Y. Lu, M. Huang*, Z. J. Chen, Z. S. Zeng, Y. C. Liu, G. Z. Du. (2023). “Drainage design combining drain holes and pinholes for tunnel boring machine segments subject to high water pressure”, Frontiers of Structural and Civil Engineering, 17(11), 1723-1738.
[10] S. Jiang, M. Huang*, B. N. Wang, K. S. Zhang, Y. Li, Z. G. Liu. (2023). “Numerical study on the effects of wetting-drying cycles on the failure modes of tunnels excavated in gypsiferous strata based on discrete element method”. Bulletin of Engineering Geology and the Environment, 82(9): 368.
[11] S. Jiang, M. Huang*, Y. J. Jiang, C. S. Xu, B. L. Li. (2021). “NMR-based Investigation on the wet–dry deterioration characteristics of gypsiferous rocks surrounding underground excavations”, Rock Mechanics and Rock Engineering. 55(4): 2323-2339.
[12] W. F. Qian, M. Huang*, C. M. Sun, B. Huang, H. Liu, G.F., Wang. (2021). “Adaptability of earth pressure balance shield tunneling in coastal complex formations: a new evaluation method”, Geomechanics and Engineering, 27(4): 375-390.
[13] S. Jiang, M. Huang*, X. Z. Wu, Z. F. Chen, K.S. Zhang. (2021). “Deterioration behavior of gypsum breccia in surrounding rock under the combined action of cyclic wetting-drying and flow rates”, Bulletin of Engineering Geology and the Environment, 80(6): 4985-5001.
[14] M. Huang*, J. W. Zhan, C. S. Xu, S. Jiang. (2020). “A new creep constitutive model for soft rocks and its application in prediction of time-dependent deformation disaster in tunnels”, ASCE, International Journal of Geomechanics, 20(7): 04020096.
[15] M. Huang*, J. W. Zhan. (2019). “Face stability assessment for underwater tunneling across a fault zone”, ASCE, Journal of Performance of Constructed Facilities, 33(3): 04019034.
[16] W. F. Qian , Y. Lu, M. Huang*, J.W. Zhan. (2021). “Study on the evaluation of adaptability of shield machine type selection in coastal complex stratum”. IOP Conference Series: Earth and Environmental Science (ARMS 11), 2021, 861.
[17] S. Jiang, Y. X. Peng, Y. Lu, M. Huang*. (2021). “NMR-based investigation on deterioration characterization of gypsum breccia in surrounding rock undergoing flow-by wetting-drying cycles”, IOP Conference Series: Earth and Environmental Science (ARMS 11), 2021, 861.
[18] Y. Lu, M. Huang*, J. Shiau, F. W. Lai, J.J. Xu. (2024). “Vacuum dewatering behavior of foam-conditioned clay soil and its potential for assessing foam-conditioned optimization in EPB shield tunnelling”, Journal of Rock Mechanics and Geotechnical Engineering. (Under review)
[19] J. J. Zhen, M. Huang*, S. Li, K. Xua, Q. H. Zhao. (2024). “Long-term forecasting of shield tunnel position and attitude deviation using the DCNN-Informer method”, Engineering Science and Technology-An International Journal. (Under review)
[20] S. Jiang, M. Huang*, G. Wang, C. S. Xu, J. Xiong. (2024). “Mechanical properties and disturbed state concept-based theoretical model of gypsum rocks with coupled influences of wet-dry cycles and flow rates”, Journal of Central South University. (Under review)
[21] J. J. Zhen, F. W. Lai, J. Shiau, M. Huang*, L. Yao, J. H. Lin. (2024). “An unsupervised incremental learning model to predict geological conditions for EPB shield tunnelling”, Journal of Rock Mechanics and Geotechnical Engineering. (Revised)
[22] J. J. Zhen, F. W. Lai, J. Shiau, M. Huang*, et al. (2024). “An explainable deep learning approach to enhance the shield tunnel deviation prediction”, Tunnelling and Underground Space Technology. (Under review)
[23] J. J. Zhen, F. W. Lai, J. Shiau, M. Huang*, L. Yao, M.F. Huang. (2024). “Long sequence time-series forecasting for shield position deviation: a novel deep transfer learning framework”, Automation in Construction. (Under review)
[24] 钱伟丰, 黄明*, 曾子坚, 等. 双向起伏地表浅埋盾构隧道开挖面三维被动失稳极限支护压力上限解. 应用基础与工程科学学报, 2023. (录用待刊)
[25] 姜启武, 黄明*, 陈志杰, 等. 深埋隧道掌子面前方地层三维渗流场解析及涌水量预测分析. 工程地质学报, 2024. (网络首发)
[26] 真嘉捷, 赖丰文, 黄明*, 等. 基于Light GBM-Informer的盾构隧道管片上浮长时间序列预测模型,岩土力学,2024. (录用待刊)
(三)、其他方向:
[1] M. Huang*, S. Jiang, C. S. Xu, D. X. Xu. (2020). “A new theoretical settlement model for large step-tapered hollow piles based on disturbed state concept theory”, Computers and Geotechnics, 124: 103626.
[2] Y. C. Zhang, M. Huang*, Y.J. Jiang, Z. Wang. (2023). “Mechanics, damage and energy degradation of rock-concrete interfaces exposed to high temperature during cyclic shear”. Construction and Building Materials, 405: 133229.
[3] S. Jiang, M. Huang*, A. Deng, D. X. Xu. (2021). “Theoretical solution for long-term settlement of a large step-tapered hollow pile in karst topography”, ASCE, International Journal of Geomechanics, 21(8): 04021148.
[4] S. Jiang, M. Huang*, T. Fang, W. Chen, and X. Shangguan. (2020). “A new large step-tapered hollow pile and its bearing capacity”, Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 173(3): 191-206.
[5] S. Jiang, M. Huang*, A. Deng, D. X. Xu, T. Fang. (2023). “A time-dependent load-transfer model for large step-tapered hollow piles based on the disturbed state concept”, Soil Mechanics and Foundation Engineering, 60: 141-148.
[6] T. Fang, M. Huang*, K. Tang. (2020). "Cross-section piles in transparent soil under different dimensional conditions subjected to vertical load: an experimental study." Arabian Journal of Geosciences 13:1133.
[7] T. Fang, M. Huang*. (2019). “Deformation and load-bearing characteristics of step-tapered piles in clay under lateral load”. ASCE, International Journal of Geomechanics, 19(6): 04019-04053.
[8] M. Huang*, X. R. Liu, N. Y. Zhang, et al. (2017). “Calculation of foundation pit deformation caused by deep excavation considering influence of loading and unloading”, Journal of Central South University, 24(9): 2164-2171.
[9] 黄明*,付俊杰,陈福全,江松,张光武. 桩端岩溶顶板地震动力特性的振动台试验研究[J]. 哈尔滨工业大学学报, 2019, 51(02): 126-135.
[10] 黄明*, 江松, 等. 超大直径变截面空心桩的荷载传递特征与理论模型[J]. 岩石力学与工程学报, 2018, 37(10): 2370-2383.
[11] 黄明*, 付俊杰, 陈福全. 桩端岩溶顶板的破坏特征试验与理论计算模型研究[J]. 工程力学, 2018, 35(10): 175-185.
[12] 黄明*, 江松, 等. 基于分离相似概念的地铁异形基坑三维开挖模型试验[J]. 工程地质学报, 2018, 26(2): 0384-0391.