(一)、微生物岩土工程方向:
[1] Q. S. Wang, M. Huang*, Y. X. Shi, et al. (2025). “Steel slag coupled enzyme-induced carbonate precipitation for tailings backfill: Sustainable system and mechanism exploration”, Chemical Engineering Journal, 520(15): 166024.
[2] L. Liang, M. Huang*, M. J. Cui, et al. (2026). “Synergistic effects of enzyme-induced carbonate precipitation (EICP) treatment and geogrid reinforcement on mechanical properties of washed recycled sand”, Geotextiles and Geomembranes, 54(2), 299-314.
[3] L. Liang, M. Huang*, J. S. Shiau, et al. (2026). “Enhancing the Mechanical Properties of Washed Recycled Sand: Synergistic Effects of EICP and Geogrid Reinforcement”, Journal of Rock Mechanics and Geotechnical Engineering. (Accepted).
[4] Q. W. Jiang, M. Huang*, J. S. Shiau, et al. (2025). “Enzyme-induced carbonate precipitation technique for reinforcing underwater sand bed: A feasibility study based on model tests”. Journal of Rock Mechanics and Geotechnical Engineering. (Online).
[5] Q. W. Jiang,, M. Huang*, M. J. Cui, et al. (2025). “Prediction of permeability of sands treated by enzyme-induced calcium precipitation (EICP): Mathematical model”. Journal of Rock Mechanics and Geotechnical Engineering. (Online).
[6] M. Huang*, Q. W. Jiang, K. Xu, C. S. Xu. (2024). “Feasibility analysis of EICP technique for reinforcing backfill layer behind TBM tunnel linings based on model tests”, Tunnelling and Underground Space Technology, 155(1): 106172.
[7] K. Xu, M. Huang*, M. J. Cui, G. X. Jin, S. Li. (2024). “Micromechanical properties and bonding fracture of EICP-reinforced sand analyzed using microindentation test”, Acta Geotechnica, 20: 3543–3561.
[8] M. Huang*, K. Xu, Z. J. Liu, C. S. Xu, M. J. Cui. (2024). “Effect of drying-wetting cycles on pore characteristics and mechanical properties of enzyme-induced carbonate precipitation-reinforced sea sand”, Journal of Rock Mechanics and Geotechnical Engineering, 16(1): 291-302.
[9] K. Xu, M. Huang*, M. J. Cui, S. Li. (2024). “Effect of crystal morphology on cementation ability and micromechanical properties of calcium carbonate precipitation induced using crude soybean enzyme”, Journal of Rock Mechanics and Geotechnical Engineering, 16(12): 5095-5108.
[10] S. Li, M. Huang*, M. J. Cui, K. Xu. (2023). “Thermal conductivity enhancement of backfill material and soil using enzyme-induced carbonate precipitation (EICP)”, Acta Geotechnica, 18(11): 6143-6158.
[11] K. Xu, M. Huang*, M. J. Cui, S. Li. (2023). “Retarding effect of cementation solution concentration on cementation ability of calcium carbonate crystal induced using crude soybean enzyme”, Acta Geotechnica, 18(22): 6235-6251.
[12] K. Xu, M. Huang*, C. S. Xu, J. J. Zhen, G. X. Jin, H. Gong. (2023). “Assessment of the bio-cementation effect on shale soil using ultrasound measurement”, Soils and Foundations, 63(1): 101249.
[13] S. Li, M. Huang*, M. J. Cui, P. Lin, L. D. Xu, K. Xu. (2023). “Stabilization of cement-soil utilizing microbially induced carbonate precipitation”, Geomechanics and Engineering, 35(1): 95-108.
[14] K. Xu, M. Huang*, J. X. Zhan, M. J. Cui, C. S. Xu. (2023). “Bio-cementation of tailings sand using ultraviolet induced urease-producing bacteria and its biomineralization mechanism”, Environmental Geotechnics, (Online).
[15] K. Xu, M. Huang*, Z. J. Liu, M. J. Cui, S. Li. (2023). “Mechanical properties and disintegration behavior of EICP-reinforced sea sand subjected to drying-wetting cycles”, Biogeotechnics, 1(2): 10019.
[16] S. Li, M. Huang*, M. J. Cui, K. Xu, G. X. Jin. (2023). “Thermal and mechanical properties of bio-cemented quartz sand mixed with steel slag”, Biogeotechnics, 1(3): 100036.
[17] K. Xu, M. Huang*, J. J. Zhen, C. S. Xu, M. J. Cui. (2022). “Field implementation of enzyme-induced carbonate precipitation technology for reinforcing a bedding layer beneath an underground cable duct”, Journal of Rock Mechanics and Geotechnical Engineering, 15(4): 1011-1022.
[18] M. Huang*, K. Xu, C. S. Xu, G. X. Jin, S. Guo. (2021). “Micromechanical properties of biocemented shale soils analyzed using nanoindentation test”, ASCE, Journal of Geotechnical and Geoenvironmental Engineering, 147(12): 04021157.
[19] G. X. Jin, K. Xu, C. S. Xu, M. Huang*, R. G. A. Qasem, S. Guo, S.Y. Liu. (2021). “Cementation of shale soils by micp technology and its damage characteristics due to freeze-thaw weathering processes”, Journal of Cold Regions Engineering, 34(4): 04020023.
[20] K. Xu, Y. X. Peng, M. Huang*, Z. J. Liu, J. J. Zhen. (2021). “Biocementation effect of high-efficiency urease-producing bacteria mutagenized from indigenous bacteria”, IOP Conference Series: Earth and Environmental Science (ARMS 11), 2021, 861.
[21] 姜启武, 黄明*, 崔明娟, 等. 酶诱导碳酸钙沉淀技术加固TBM壁后吹填豆砾石最优配比试验及机制研究. 岩土力学, 2024, 45(07): 2037-2049.
[22] 李爽, 黄明*, 崔明娟, 等. 纳米四氧化三铁对微生物诱导碳酸钙沉淀的作用效果与机理研究. 材料导报, 2024. (网络首发)
[23] 姜启武, 黄明*, 崔明娟, 等. Ca2+浓度对EICP固化钙质砂效果影响的试验研究[J]. 工程地质学报, 2024. (网络首发)
[24] 姜启武, 黄明*, 许凯, 等. MICP 固化钙质砂的统计损伤本构模型[J]. 工程地质学报, 2023. (网络首发)
[25] 刘子健, 黄明*, 崔明娟, 等. 基于纳米压痕技术的页岩土MICP结石体微观力学特性研究. 防灾减灾工程学报, 2022, 42(05): 1036-1045.
[26] 张瑾璇, 黄明*, 刘子健. 南方湿热区新型产脲酶菌加固土体的效果研究[J].工程地质学报, 2021, 31(01): 113-123.
[27] 黄明*, 张瑾璇, 刘子健, 许凯. 南方湿热区产脲酶菌固化海砂的碳酸钙结晶效果研究. 高校地质学报. 2021, 27(06): 716-722.
[28] 许凯, 靳贵晓, 刘子健, 黄明*, 龚豪. 软岩填筑体多层多孔微生物灌浆室内模型试验研究.工程地质学报. 2020, 28(04): 697-706.
[29] 靳贵晓, 张瑾璇, 许凯, 黄明*, 邱继业. 颗粒级配对残积土MICP灌浆效果的影响评价. 地下空间与工程学报. 2020, 16(01): 295-302.
[30] 靳贵晓, 张瑾璇, 许凯, 黄明*, 龚豪. 页岩填料MICP-格栅灌浆胶结体超声波速分布特征. 地下空间与工程学报. 2019, 15(05): 1353-1361.
[31] 黄明*, 张瑾璇, 靳贵晓, 等. 残积土MICP灌浆结石体冻融损伤的核磁共振特性试验研究[J]. 岩石力学与工程学报, 2018, 37(12): 210-219.
(二)、盾构与隧道方向:
[1] M. Huang*, C. Z. Lin, Y. Lu, C. X. Wang, S. X. Yan, G. Y. Cai. (2026). “Simple characterization of compression–adhesion behavior of foam–conditioned soil in EPB shield tunneling”, Tunnelling and Underground Space Technology, 167, 107056.
[2] Y. Lu, M. Huang*, C. S. Xu, T. Xu. (2025). “Experimental investigation on the interaction mechanism of aqueous foam and unsaturated granite residual soil during conditioning”, Engineering Geology, 108137.
[3] Y. Lu, M. Huang*, C. Z., Zhang, B. N. Wang, L. Q. Peng, W. Wei, (2025). “Optimization of defoaming-flocculation-dewatering indices of earth pressure balance (EPB) shield muck using response surface methodology and desirability approach”, Journal of Rock Mechanics and Geotechnical Engineering, 17(2), 1134-1148.
[4] Y. Lu, M. Huang*, W. Yang, C. S. Xu, H. K. Xue. (2025). “Fuzzy Multiattribute Decision-Making Model Based on an Improved DEAHP for Selection of a Shield Auxiliary Construction Method”, ASCE, International Journal of Geomechanics, 25(4), 04025027.
[5] Y. Lu, M. Huang*, J. Shiau, F. W. Lai, L. Q. Peng. (2025). “Effects of flocculants on in–situ recycling potential of waste EPB shield muck with residual foams”, Soils and Foundations, 65, 101625.
[6] J. J. Zhen, F. W. Lai, M. Huang*, J. J. Zheng, J. Shiau, P. Wang, J. H. Zheng. (2025). “An explainable deep learning approach to enhance the prediction of shield tunnel deviation”, Journal of Rock Mechanics and Geotechnical Engineering, 18(1),566-579.
[7] J. J. Zhen, M. Huang*, S. Li, K. Xu, Q. H. Zhao. (2025). “Long-term forecasting of shield tunnel position and attitude deviation using the 1DCNN-informer method”, Engineering Science and Technology, an International Journal, 63, 101957.
[8] J. J. Zhen, F. W. Lai, J. Shiau, M. Huang*, Y. Lu, J. H. Lin. (2025). “An unsupervised incremental learning model to predict geological conditions for earth pressure balance shield tunneling”, Journal of Rock Mechanics and Geotechnical Engineering, 17(11), 6993-7006.
[9] B. N. Wang, M. Huang*, Y. Lu, C. S. Xu, Y. Wang. (2025). “A laboratory study of conditioning clay-rich soils in seawater environments for EPBS tunnel constructions in coastal areas”, Tunnelling and Underground Space Technology, 158, 106409.
[10] B. N. Wang, M. Huang*, Y. Lu, X. Xie, G. Y. Cai. (2025). “Effects of defoamer components on dynamic defoaming behavior of waste muck from EPB shield tunnelling”, Tunnelling and Underground Space Technology, 166, 106998.
[11] B. N. Wang, M. Huang*, Y. Lu, X. Xie, J. J. Zheng, S. X. Yan. (2025). “Effect of residual foam and defoamer on flocculation efficiency during in-situ muck recycling for EPBS tunneling”, Journal of Rock Mechanics and Geotechnical Engineering. (Accept).
[12] M. Huang*, S. Jiang, Y. C. Zhang, Y. J. Jiang, X. D., Zhang, C. S. Xu. (2024). “A new stability analysis model for wet-dry sensitive rocks surrounding underground excavations based on disturbed state concept theory”, International Journal of Rock Mechanics and Mining Sciences, 174: 105653.
[13] M. Huang*, Y. Lu, J. J. Zhen, X. B. Lan, C. S. Xu, W. L. Yu. (2023). “Analysis of face stability at the launch stage of shield or TBM tunnelling using a concrete box in complex urban environments”, Tunnelling and Underground Space Technology, 135: 105067.
[14] Y. Lu, M. Huang*, F. W. Lai, C. S. Xu, L. Q. Peng, (2024). “Quantitative interrelations of conditioning and recycling indices of high-saturation clay soils for EPB shield tunnelling”, Tunnelling and Underground Space Technology, 154: 106083.
[15] Y. Lu, M. Huang*, C. Z., Zhang, B. N. Wang, L. Q. Peng, W. Wei, (2024). “Optimization of defoaming-flocculation-dewatering indices of earth pressure balance (EPB) shield muck using response surface methodology and desirability approach”, Journal of Rock Mechanics and Geotechnical Engineering. (In press)
[16] W. F. Qian, M. Huang*, B. N. Wang, C. S. Xu, Y. F. Hu. (2024). “Experimental study of face passive failure features of a shallow shield tunnel in coastal backfill sand”, Frontiers of Structural and Civil Engineering, 18(2): 252-271.
[17] Y. Lu, M. Huang*, Q. Zhou, B.N. Wang, W. Wei, J. Chen, (2024). “On recycling earth pressure balance shield muck with residual foaming agent: defoaming and antifoaming investigations”. Environmental Science and Pollution Research, 31(5), 8046-8060.
[18] Y. Lu, M. Huang*, P. W. Huang, C. S. Xu, Y. Wang, Y. F. Hu. (2024). “Soil conditioning for EPB shield tunnelling in coastal silty clay strata: laboratory research and field application”, ASCE, International Journal of Geomechanics, 24(2): 04023289.
[19] Y. Lu, M. Huang*, Q. W. Jiang, Z. J. Chen, C. S. Xu, Y. Wang. (2023). “Excavation-induced groundwater evolution of non-circular tunnels in mountainous region: analytical and numerical investigation”, ASCE, International Journal of Geomechanics, 2023, 23(12): 1.1-1.12.
[20] Y. Lu, M. Huang*, Z. J. Chen, Z. S. Zeng, Y. C. Liu, G. Z. Du. (2023). “Drainage design combining drain holes and pinholes for tunnel boring machine segments subject to high water pressure”, Frontiers of Structural and Civil Engineering, 17(11), 1723-1738.
[21] S. Jiang, M. Huang*, B. N. Wang, K. S. Zhang, Y. Li, Z. G. Liu. (2023). “Numerical study on the effects of wetting-drying cycles on the failure modes of tunnels excavated in gypsiferous strata based on discrete element method”. Bulletin of Engineering Geology and the Environment, 82(9): 368.
[22] S. Jiang, M. Huang*, Y. J. Jiang, C. S. Xu, B. L. Li. (2021). “NMR-based Investigation on the wet–dry deterioration characteristics of gypsiferous rocks surrounding underground excavations”, Rock Mechanics and Rock Engineering. 55(4): 2323-2339.
[23] Y. Lu, M. Huang, J. J. Zheng, Q. Zhou, Y. C. Zhang, S. Q. Wei, M. L. Wang. (2025). “Interfacial Adhesion Behavior of Clay-Sand Binary Mixtures in EPB Shield Tunneling: Laboratory Characterization and Governing Mechanism”, Tunnelling and Underground Space Technology. (Revised)
[24] B. N. Wang, M. Huang*, D. C. Lu, Y. Lu, F. W. Lai, S. Q. Wei. (2025). “Dewatering behavior of shield slurry with residual foaming agent: mechanistic analysis and efficiency enhancement”, Journal of Rock Mechanics and Geotechnical Engineering. (Revised)
[25] W. F. Qian, M. Huang*, C. M. Sun, B. Huang, H. Liu, G.F., Wang. (2021). “Adaptability of earth pressure balance shield tunneling in coastal complex formations: a new evaluation method”, Geomechanics and Engineering, 27(4): 375-390.
[26] S. Jiang, M. Huang*, X. Z. Wu, Z. F. Chen, K.S. Zhang. (2021). “Deterioration behavior of gypsum breccia in surrounding rock under the combined action of cyclic wetting-drying and flow rates”, Bulletin of Engineering Geology and the Environment, 80(6): 4985-5001.
[27] M. Huang*, J. W. Zhan, C. S. Xu, S. Jiang. (2020). “A new creep constitutive model for soft rocks and its application in prediction of time-dependent deformation disaster in tunnels”, ASCE, International Journal of Geomechanics, 20(7): 04020096.
[28] M. Huang*, J. W. Zhan. (2019). “Face stability assessment for underwater tunneling across a fault zone”, ASCE, Journal of Performance of Constructed Facilities, 33(3): 04019034.
[29] W. F. Qian , Y. Lu, M. Huang*, J.W. Zhan. (2021). “Study on the evaluation of adaptability of shield machine type selection in coastal complex stratum”. IOP Conference Series: Earth and Environmental Science (ARMS 11), 2021, 861.
[30] S. Jiang, Y. X. Peng, Y. Lu, M. Huang*. (2021). “NMR-based investigation on deterioration characterization of gypsum breccia in surrounding rock undergoing flow-by wetting-drying cycles”, IOP Conference Series: Earth and Environmental Science (ARMS 11), 2021, 861.
[31] Y. Lu, M. Huang*, J. Shiau, F. W. Lai, J.J. Xu. (2024). “Vacuum dewatering behavior of foam-conditioned clay soil and its potential for assessing foam-conditioned optimization in EPB shield tunnelling”, Journal of Rock Mechanics and Geotechnical Engineering. (Under review)
[32] J. J. Zhen, M. Huang*, S. Li, K. Xua, Q. H. Zhao. (2024). “Long-term forecasting of shield tunnel position and attitude deviation using the DCNN-Informer method”, Engineering Science and Technology-An International Journal. (Under review)
[33] S. Jiang, M. Huang*, G. Wang, C. S. Xu, J. Xiong. (2024). “Mechanical properties and disturbed state concept-based theoretical model of gypsum rocks with coupled influences of wet-dry cycles and flow rates”, Journal of Central South University. (Under review)
[34] J. J. Zhen, F. W. Lai, J. Shiau, M. Huang*, L. Yao, J. H. Lin. (2024). “An unsupervised incremental learning model to predict geological conditions for EPB shield tunnelling”, Journal of Rock Mechanics and Geotechnical Engineering. (Revised)
[35] J. J. Zhen, F. W. Lai, J. Shiau, M. Huang*, et al. (2024). “An explainable deep learning approach to enhance the shield tunnel deviation prediction”, Tunnelling and Underground Space Technology. (Under review)
[36] J. J. Zhen, F. W. Lai, J. Shiau, M. Huang*, L. Yao, M.F. Huang. (2024). “Long sequence time-series forecasting for shield position deviation: a novel deep transfer learning framework”, Automation in Construction. (Under review)
[37] 钱伟丰, 黄明*, 曾子坚, 等. 双向起伏地表浅埋盾构隧道开挖面三维被动失稳极限支护压力上限解. 应用基础与工程科学学报, 2025, 33(01): 273-288.
[38] 真嘉捷, 赖丰文, 黄明*, 等. 基于Light GBM-Informer的盾构隧道管片上浮长时间序列预测模型, 岩土力学, 2024, 45(12): 3791-3801.
[39] 路遥, 黄明, 关振长, 张元超, 周麒, 宋珲, 郑金伙. 基于响应面法的全风化花岗岩泡沫改良多目标协同优化. 岩土力学, 2025. (返修).
(三)、其他方向:
[1] S. Jiang, M. Huang*, G. Wang, C. S. Xu, J. Xiong. (2025). “Static compressive mechanical properties and disturbed state concept-based theoretical model of gypsum rocks with coupled influences of wet-dry cycles and flow rates”, Journal of Central South University, 32(7), 2638-2660.
[2] F. W. Lai, N. Y. Tan, J. Shiau, M. Huang*. (2025). “Probabilistic stability analyses of active shallow trapdoor in spatially random sand”, Probabilistic Engineering Mechanics, 80, 103770.
[3] C. J. Zheng, J. Q. Yang, J. Shiau, M. Huang*. (2025). “Vertical kinematic response of monopiles subjected to vertically propagating seismic P-waves”, Ocean Engineering, 318, 120158.
[4] Y. C. Zhang, M. Huang*, Y. J. Jiang, Y. Qian, S. Jiang, J. L. Cheng. (2025) “Shear contraction mechanism and mechanical behavior of shear-induced rock bridge fractures under constant normal stiffness conditions”, Bulletin of Engineering Geology and the Environment, 84(1), 48.
[5] M. Huang*, S. Jiang, Y. C. Zhang, Y. J. Jiang, X. D. Zhang, C. S. Xu. (2024). “A new stability analysis model for wet-dry sensitive rocks surrounding underground excavations based on disturbed state concept theory”, International Journal of Rock Mechanics and Mining Sciences, 174, 105653.
[6] S. Jiang, M. Huang*, B. N. Wang, K. S. Zhang, Y. Li, Z. G. Lin. (2023). “Numerical study on the effects of wetting–drying cycles on the failure characteristics of tunnels excavated in gypsiferous strata based on discrete element method”, Bulletin of Engineering Geology and the Environment, 82(9), 368.
[7] S. Jiang, M. Huang*, X. Z. Wu, Z. F. Chen, K.S. Zhang. (2021). “Deterioration behavior of gypsum breccia in surrounding rock under the combined action of cyclic wetting-drying and flow rates”, Bulletin of Engineering Geology and the Environment, 80(6): 4985-5001.
[8] M. Huang*, S. Jiang, C. S. Xu, D. X. Xu. (2020). “A new theoretical settlement model for large step-tapered hollow piles based on disturbed state concept theory”, Computers and Geotechnics, 124: 103626.
[9] Y. C. Zhang, M. Huang*, Y. J. Jiang, Z. Wang. (2023). “Mechanics, damage and energy degradation of rock-concrete interfaces exposed to high temperature during cyclic shear”. Construction and Building Materials, 405: 133229.
[10] S. Jiang, Y. X. Peng, Y. Lu, M. Huang*. (2021). “NMR-based investigation on deterioration characterization of gypsum breccia in surrounding rock undergoing flow-by wetting-drying cycles”, IOP Conference Series: Earth and Environmental Science (ARMS 11), 2021, 861.
[11] S. Jiang, M. Huang*, A. Deng, D. X. Xu. (2021). “Theoretical solution for long-term settlement of a large step-tapered hollow pile in karst topography”, ASCE, International Journal of Geomechanics, 21(8): 04021148.
[12] S. Jiang, M. Huang*, T. Fang, W. Chen, and X. Shangguan. (2020). “A new large step-tapered hollow pile and its bearing capacity”, Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 173(3): 191-206.
[13] S. Jiang, M. Huang*, A. Deng, D. X. Xu, T. Fang. (2023). “A time-dependent load-transfer model for large step-tapered hollow piles based on the disturbed state concept”, Soil Mechanics and Foundation Engineering, 60: 141-148.
[14] T. Fang, M. Huang*, K. Tang. (2020). "Cross-section piles in transparent soil under different dimensional conditions subjected to vertical load: an experimental study." Arabian Journal of Geosciences 13:1133.
[15] T. Fang, M. Huang*. (2019). “Deformation and load-bearing characteristics of step-tapered piles in clay under lateral load”. ASCE, International Journal of Geomechanics, 19(6): 04019-04053.
[16] M. Huang*, X. R. Liu, N. Y. Zhang, et al. (2017). “Calculation of foundation pit deformation caused by deep excavation considering influence of loading and unloading”, Journal of Central South University, 24(9): 2164-2171.
[17] 黄明*,付俊杰,陈福全,江松,张光武. 桩端岩溶顶板地震动力特性的振动台试验研究[J]. 哈尔滨工业大学学报, 2019, 51(02): 126-135.
[18] 黄明*, 江松, 等. 超大直径变截面空心桩的荷载传递特征与理论模型[J]. 岩石力学与工程学报, 2018, 37(10): 2370-2383.
[19] 黄明*, 付俊杰, 陈福全. 桩端岩溶顶板的破坏特征试验与理论计算模型研究[J]. 工程力学, 2018, 35(10): 175-185.
[20] 黄明*, 江松, 等. 基于分离相似概念的地铁异形基坑三维开挖模型试验[J]. 工程地质学报, 2018, 26(2): 0384-0391.