[1] 国家自然科学基金青年项目,52109118,孔隙水压力对泥石流演化机制及水石分离设施效能影响研究,2022/1-2024/12, 30万元,主持。
[2] 福建省自然科学基金,2020J05108,降雨型滑坡运动演化过程固液耦合效应研究,2020/11-2023/11,6万元,主持。
[3] 自然资源部丘陵山地地质灾害防治重点实验室开放基金, 多尺度视角下的台风暴雨型泥石流成浆机制与水动力过程研究, 2025/1-2026/6,主持。
[4] 福州大学引进人才科研启动基金项目,510890,库区滑坡作用过程及其次生灾害效应研究,2020/06-2022/06,15万元,主持。
[5] 西班牙国家基金,“多物理场耦合粒子方法在快速滑坡及其入水过程效应研究中的应用”(Multiphysics coupled particle methods: Application to modelling of fast landslides and their effects in water bodies, (PBM_LANDSLIDE)),2020/12-2023/12,20.02万欧元,参加。
[6] 西班牙国家基金,“前沿滑坡模拟及边坡失稳分析方法”(Advanced modelling of landslide and slope failure problems), (BIA2016‐76253‐P), 2016/12-2020/12,参加。
[7] 美洲发展银行研究项目,“考虑随机性的库区滑坡和泥石流危害和风险模拟方法”(Modelización estocástica de la peligrosidad y riesgo inducidos por presas formadas por deslizamientos y flujos.),2021/12-2023/12,参加。
[8] 国家重点研发计划(National Key R&D Program of China):水库大坝安全诊断与智慧管理关键技术与应用--大型复杂水工结构性能演化测试装备与智能诊断技术(课题编号2018YFC0407102),参加。
[9] 国家自然科学基金面上项目,52079032,内外激励源作用下海底输流管道流激振动力学行为及耦合机制研究,2021/1-2024/12,58万元,参加。
[10] 水利部重大科技项目,非接触式多维感知水利巡检与监测智能机器人研发,参加。
[11] 福建省自然科学基金,引导性项目,针对福建大型钨矿的高效勘查及综合利用前景评价技术,参加。
[12] 福建省自然科学基金,面上项目,紊流结构与推移质运动及床面结构耦合机理研究,参加。
[13] 福建省古田溪抽蓄厂房围岩稳定分析专题委外采购,主持。
[14] 输变电工程生态混凝土-土工格栅协同护坡技术研究及碳效益评估,主持。
[15] 基于数字孪生与人工智能的重力坝预警技术研究,主持。
[16] 福建水利水电三年科研布局规划,主持。
[17] 风暴潮作用下海堤溃决机制与淹没区风险评估,主持。
[18] 龙海区中型水闸除险加固工程水闸抗震动力计算研究工程咨询,主持。
[19] 抽蓄弃渣场泥石流数值模拟及安全防控措施专题研究,主持。
[1] LIN C, PASTOR M, YAGUE A, et al. 2019c. A depth-integrated SPH model for debris floods: application to Lo Wai (Hong Kong) debris flood of August 2005. Geotechnique [J]: 1-21.
[2] LIN C, PASTOR M, LI T, et al. 2019a. A PFE/IE–SPH joint approach to model landslides from initiation to propagation. Computers and Geotechnics [J], 114: 103153.
[3] LIN C, PASTOR M, LI T, et al. 2019b. A SPH two-layer depth-integrated model for landslide-generated waves in reservoirs: application to Halaowo in Jinsha River (China). Landslides [J]. 2019, 16(11) : 2167-2185.
[4] LIN C, WANG X, PASTOR M, et al. 2021. Application of a Hybrid SPH - Boussinesq model to predict the lifecycle of landslide-generated waves. Ocean Engineering [J], 223: 108658.
[5] LIN C, WANG X, SU Y, et al. 2022. Deformation Forecasting of Pulp-Masonry Arch Dams via a Hybrid Model Based on CEEMDAN Considering the Lag of Influencing Factors. Journal of structural engineering (New York, N.Y.) [J], 148.
[6] LIN C, ZOU Y, LAI X H, et al. 2023. Variation Trend Prediction of Dam Displacement in the Short-Term Using a Hybrid Model Based on Clustering Methods. Applied Sciences-Basel [J], 13.
[7] LIN C, Weng K L, Lin Y L, et al. 2022. Time Series Prediction of Dam Deformation Using a Hybrid STL-CNN-GRU Model Based on Sparrow Search Algorithm Optimization. Applied Sciences-Basel [J], 12.
[8] LIN C, Liu R F, Lin W W, et al. 2025. Underwater dam crack image enhancement and crack detection based on improved diffusion model and SDI-ASF-YOLO11. Construction and Building Materials[J], 492.
[9] LIN C, ZOU Y, SU Y, et al. 2026. Physics-Informed Reconstruction Framework for Heterogeneous Dam Deformation Monitoring Data Across Automation Transitions Transformation, Measurement[J], (accepted)
[10] SU Y, FU J Y, LIN C*, et al. 2025. A novel deep learning multi-step prediction model for dam displacement using Chrono-initialized LSTM and sequence-to-sequence framework. Expert Systems with Applications [J], 271: 22.
[11] SU Y, WENG K, LIN C*, et al. 2021. Dam Deformation Interpretation and Prediction Based on a Long Short-Term Memory Model Coupled with an Attention Mechanism. Applied Sciences-Basel [J], 11.
[12] ZHANG T, LIN T, LIN C*, et al. 2021. Numerical simulation of extended mild-slope equation including wave breaking effect. Engineering Analysis with Boundary Elements [J], 128: 42-57.
[13] ZHANG T, LIN Z-H, LIN C*, et al. 2021. Numerical Simulation of the Time-Dependent Mild-Slope Equation by the Generalized Finite Difference Method. Pure and Applied Geophysics, 2021, 178(11) : 4401-4424.
[14] SU Y, FU J Y, LIN C*, et al. 2025. A novel deep learning multi-step prediction model for dam displacement using Chrono-initialized LSTM and sequence-to-sequence framework. Expert Systems with Applications [J], 271: 22.
[15] ZHANG T, ZHAN C-X, CAI B, LIN C*, et al. 2021. An improved meshless artificial viscosity technology combined with local radial point interpolation method for 2D shallow water equations. Engineering Analysis with Boundary Elements [J], 133: 303-318.
[16] ZHANG T, ZHAN C-X, WANG H W, LIN C*, et al. 2021. A meshless artificial viscosity method for wet-dry moving interfaces problems of shallow water flow. Ocean Engineering [J], 236: 109447.
[17] SU Y, FU J Y, LAI X H, LIN C, et al. 2025. Complex cross-regional landslide susceptibility mapping by multi-source domain transfer learning. Geoscience Frontiers [J], 16.
[18] SU Y, CHEN Y X, LAI X H, HUANG S X, LIN C, et al. 2024. Feature adaptation for landslide susceptibility assessment in "no sample" areas. Gondwana Research [J], 131.
[19] SU Y, HUANG B, YANG L J, LAI X H, LIN C, et al. 2024. Study on the detection of groundwater boundary based on the Trefftz method. Natural Hazards [J], 120.
[20] 林川, 王翔宇, 苏燕, 张挺, 陈泽钦 2022. 联合聚类方法和深度学习的混凝土坝变形预测. 水力发电学报 [J], 41: 112-127.
[21] 林川, 林彦喆, 苏燕, 等. 2024. 颗粒流运动SPH方法及滑坡破碎效应研究. 水力发电学报 [J], 43: 61-72.
[22] 林川, 林彦喆, 林威伟, 等. 2025. 暴雨型泥石流特征参数反演方法及透水格栅效能评价研究. 水力发电学报 [J], 44: 1-14.
[23] 林川, 刘荣锋, 苏燕, 等. 2025. 深度与迁移学习驱动的水下图像增强与裂缝量化研究. 水力发电学报 [J], 44: 73-84.
[24] 林川,张萌杰, 林威伟, 等. 2026. 融合特征筛选与残差校正的重力坝变形时空混合模型. 水力发电学报 [J]. (已录用)
[25] 苏燕,黄姝璇, 林川*,等. 2023. 融合多元时空信息的Informer-AD大坝变形预测模型. 水力发电学报 [J], 42: 101-113.
[26] 苏燕,付家源, 林川*,等. 2022. 基于时间注意力机制的大坝动态变形预测模型. 水力发电学报 [J], 41: 72-84.
[27] 苏燕,郑志铭, 林川*,等. 2022. 融合时变因素的浆砌石坝变形时空混合模型. 水力发电学报 [J], 41: 124-138.